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Abstract: The response of reinforced concrete walls with two types of distributed reinforcement, 
namely, conventional reinforcement (A630) and ductile electrowelded reinforcement (A630S), is 
investigated. Taking as reference the results of 16 test on walls built with varied size and steel 
detailing, the main objective of this paper is to evaluate several hysteretic models for calibration, 
and compare their structural capacity, ductility, and strain distribution under cyclic loads. The 
findings show that both options produce significant strain levels (around 3% drift). Specimens 
prone to shear failure with electrowelded joints showed up to 20% lower displacement capacity 
but appreciable variability in ductility. No important differences are observed in terms of strength, 
and all specimens reached similar peak loads. Bayesian parameter identification is used in two 
hysteretic models (multilinear and Bouc-Wen) for each cycle. In general, the results show high 
accuracy in the parameter calibration after achieving 10 mm of lateral displacement. 

Introduction 

The need for increased productivity, functionality, and quality is driving the construction sector 
towards safer solutions in seismic countries. Given the variety of material suppliers and building 
approaches aimed at increasing productivity, several options that can be taken to carry out a 
construction project in Chile and around the world. In this context, the use of ductile electrowelded 
reinforcement in reinforced concrete (RC) elements is an attractive alternative within the Chilean 
market. This technology allows short construction times and reduced alteration of the detailing of 
the reinforcement for concrete casting. However, electrowelded steel is distinctively less ductile 
than conventional steel. This aspect generates uncertainty and hampers its wider use in structural 
members, due to the potential implications under seismic events. However, a new steel material 
for electrowelded reinforcement has been developed to replicate the mechanical properties of 
A630 quality steel while allowing the bars to be welded. 

To better describe the response of the above-mentioned structural elements with electrowelded 
reinforcement, it is necessary to analyse the parameters associated with their seismic hysteretic 
response. In this regard, nonlinear hysteretic systems are widely used in mechanical, aeronautics, 
geotechnical, and civil engineering fields. Nevertheless, an accurate description of the hysteretic 
response of a RC structure is complicated by the large uncertainties in their path-dependent 
relationship between deformation and resisting force. Since a dynamic analysis with a full-scale 
three-dimensional finite element model would demand high computational costs, many 
researchers have used an equivalent single-degree-of-freedom (SDOF) hysteretic system to 
represent a RC structure. The bilinear relationship model, in which the stiffness always returns to 
the original elastic stiffness upon load reversals and the strength remains unaffected by increases 
in inelastic strain or in the number of load reversals, has been considered a suitable idealization 
for behaviour of many structural elements. However, experimental as well as theoretical work on 
RC elements subjected to repeated and reversed loading have demonstrated that their post-yield 
behaviour is significantly different from the bilinear model. In such elements there is a loss of 
stiffness with cyclic increases in inelastic strain, even though there may be no apparent loss of 
strength. In 1970, Takeda et al. described a series of characteristics to be considered when 
building a multi-linear model, such as stiffness degradation in the hysteretic response (Takeda et 
al 1970). Other mathematical models that do not use multi-linear relationships have also been 
proposed in the previous scientific literature. In 1967, Bouc first proposed a hysteretic model in 
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differential form to simulate nonlinear cyclic systems, and a few years later, Wen modified this 
model by including smooth behaviour for structural random vibration analysis (Wen 1976).  

There are various methods for parameter calibration of the models described above. Among 
them, the Bayesian approach has been gaining popularity recently, as it provides a rigorous 
framework to perform parameter identification and quantify the uncertainty of a model. This paper 
therefore compares the seismic behaviour of RC walls with electrowelded reinforcement using a 
simple multilinear hysteresis, and the original Bouc-Wen model to calibrate using Bayesian 
parameter identification as a tool for optimization. In contrast to previous literature, this work 
calibrates each parameter for each cycle, with the aim of seeing the evolution of the parameters 
and the parameter uncertainty as a function of the number of cycles. Additionally, 
photogrammetry results are included to be able to compare the response obtained from the tests 
with the failure modes. 

Methodology 

To obtain different failure modes and replicate multiple detailing configurations observed in 
Chilean constructions, a set of 16 RC wall specimens were built. In terms of geometry and 
detailing, 4 geometries are defined and described in Table 1 together with their corresponding 
notation, which is used throughout the remainder of the paper. The amount of reinforcing steel is 
quantified by ρ (the ratio of the area of reinforcement to the section area of the concrete member) 
also presented in Table 1, where 𝜌𝑙  is the longitudinal reinforcement, 𝜌𝑡  is the transverse 
reinforcement, and 𝜌𝑏 is the stirrup contribution in the border elements. 4 specimens were built 
for each wall configuration. To study repeatability, 2 specimens are built with conventional steel 
(A630-420H), and the other 2 specimens are built with ductile electrowelded steel (A630-420HS) 
in the distributed reinforcement as shown in Figure 1. The difference between specimens with 
conventional reinforcement mesh “CM” and with ductile electrowelded mesh “EM” is mainly in the 
reinforcing steel curtain of the walls. Importantly, the mesh is only a part of the total reinforcement 
of the specimen, so the difference between the elements with CM and EM obey only to distinctions 
in their horizontal and vertical reinforcements. It is noteworthy that specimens with A630S ductile 
electrowelded mesh replicate the ties and bends used in the assembly of conventional steel. The 
variations in wall geometries are intended to capture the element behaviours for different 
slenderness values, thicknesses, and mesh quantities, incorporating flexural and shear failure 
modes. RC shear walls are conventionally classified into slender walls (H/L>3.0), moderate walls 
(1.5 ≤ H/L ≤ 3.0) and squat walls (H/L<1.5), where H is the wall height, L is the wall length, and t 
is the wall thickness. 

 

Wall H/L t (m) 
Horizontal/vertical 

mesh (curtain) 

Confinement 
stirrups 

(between mesh) 
Ties 

Longitudinal 
border 

elements 

𝝆𝒍, 

𝝆𝒕 

(%) 

𝝆𝒃 

(%) 

W1 2.0 0.20 ɸ8@150mm (double) 1Eɸ8@150mm ɸ8@150mm 2ɸ12 0.34 1.60 

W2 1.0 0.20 ɸ8@200mm (double) 2Eɸ8@150mm ɸ8@150mm 4ɸ12 0.25 1.30 

W3 1.0 0.12 ɸ8@200mm (single) 2Eɸ8@150mm - 4ɸ12+ɸ8 0.21 2.20 

W4 1.0 0.12 ɸ8@120mm (single) 1Eɸ8@150mm - 4ɸ12+ɸ8 0.35 2.20 

Table 1. Detailing of RC walls. 

    
(a) W1. (b) W2. (c) W3. (d) W4. 

Figure 1. Wall reinforcement.  
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The strains developed in the walls are analysed using photogrammetry, a methodology used in 
attention to its low implementation cost, versatility, high precision, and the possibility of obtaining 
results that other sensors cannot detect, such as strain fields or crack patterns for the accurate 
identification of failure modes of the structural elements. Using this method, the data are recorded 
through a sequence of photographs by a camera, and these images are subsequently processed 
through specialized software. As a result, the displacement and strain fields on the surface of the 
element are obtained. In this work, the Ncorr software developed by Blaber et al. (2015) based 
on Digital Image Correlation (DIC) is used to output a strain matrix for each photograph examined. 
This allows the user to process the data in the most appropriate way. 

 

Hysteretic models 

Two mathematical models are used to represent the seismic response of RC walls with ductile 
electrowelded reinforcing steel: i) a multilinear (ML) model composed of straight lines (Figure 2.a), 
and ii) the original Bouc-Wen (BW) model (Figure 2.b). 

 

  
(a) Multilinear model. (b) Bouc-Wen model. 

Figure 2. Hysteretic models. 

The first hysteretic model is proposed based on prior experience and experimental results. Its 
parameters are: the initial stiffness 𝑘𝐼, stiffness degradation 𝑘𝑅, strength degradation after the 
ultimate load 𝐹𝑆, and pinching 𝐹𝑃. In addition, the original BW model is used. Despite the existence 
of other more sophisticated BW class models, the computational cost of the original model is 
much lower when optimizing the parameter selection. It should be mentioned that this work 
examines the evolution of the fitted parameters with each loading cycle, with the aim of gaining 
insight on their response and its associated uncertainty as a function of the number of cycles. 

 

Nonlinear model updating 

Bayesian parameter estimation approach 

The mathematical models presented in this work have a certain number of unknown parameters 
whose values must be tuned using reliable data obtained from experimental tests, so that the 
simulated response of the system represents as accurate as possible the real response. This 
process is called identification, and it aims to evaluate the numerical values to be assigned to a 
vector collecting all the model parameters, named parameter vector θ. Let y = [y1, … , yk] denote 

the measured data obtained by the experimental testing, where k is the total number of time 

steps. In the context of this study’s measurements in the laboratory, y  refers to the lateral 
displacement of a RC wall specimen at the top under lateral cyclic loading.  

The Bayesian approach for parameter estimation allows for a probabilistic point of view to be 
taken upon the values of model parameters. Its objective is to update prior beliefs about 
parameter values and variability through observed (or experimental) data and conditional 
probabilities, obtaining as an output the so-called posterior distribution (or posterior PDF) for each 
parameter. When conducting Bayesian batch estimation, the overall calibration of the model-
predicted response with respect to observed data is considered. The derivation of this formulation 
stems from Bayes' theorem, which expressed in terms of observed response y , and model 
parameters θ yields Equation 1:  
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p(θ|y) =

p(y|θ) p(θ)

p(y)
=

1 

C
p(y|θ)p(θ) (1) 

Where p(θ|y) is the updated belief, commonly known as posterior PDF, about the values of 
parameters after measuring data y . The likelihood function p(y|θ)  is related to the level of 

uncertainty associated to measured response y  for given parameters θ. Prior distribution is 

represented by p(θ), which reflects the user's knowledge about θ in the absence of data, and 

p(y), known as model evidence, is a multi-dimensional integral over an uncertain parameter 
space. The value of the evidence is known after the measurements are made, and the 
computation of this integral is often not practical. It is assumed here that the model evidence is a 
normalizing constant statistically independent of θ, and thus, it equals a constant number (p(y) =
C ∈ ℝ+ ). Equivalently, it is possible to omit the normalization constant C  and express the 
unnormalized posterior density as:  

 p(θ|y)∝p(y|θ) p(θ) (2) 

In Bayesian estimation, the estimation of θ that maximizes the posterior PDF - i.e., the mode of 
p(θ|y) - is named the maximum a posteriori (MAP) estimation of θ: 

 θMAP= arg max p(θ|y) (3) 

It is usually more convenient to formulate the estimation problem as a minimization problem. 
Therefore, the MAP estimation of θ can be defined as: 

 θMAP = arg min[− ln p(θ|y)] (4) 

  θMAP = arg min[− ln p(y|θ) − ln p(θ)] (5) 

When p(θ) is adequately flat and close to uniform, its natural logarithm converges to a constant 
value. Consequently, the MAP estimation problem expressed in Equation 3 simplifies into a 
maximum likelihood estimation (MLE) problem, formulated as: 

 θMLE = arg min[− ln p(y|θ)] (6) 

Let h = [h1, … , hk]denote the system output of the model with θ - i.e., the nonlinear response 

function - under the same excitation as the observed system output y. The measured output is 
modelled as: 

 εi(θ) = yi − hi (7) 

In which εi(θ), the simulation error at the ith time step, encompass the discrepancy between the 

observed response of the structure and the model response. If the prediction error εi at different 
measured data points are independent and identically Gaussian distributed with zero mean and 
diagonal covariance matrix R, the likelihood function can be expressed as follows:  

 p(y|θ) = ∏ p(εi)

k

i=1

 (8) 

 p(y|θ) = ∏
1

(2π)nθ/2|R|1/2
exp (−

1

2
[yi − hi(θ)]TR−1[yi − hi(θ)])

k

i=1

 (9) 

 p(y|θ) =
1

(2π)nθ/2|R|1/2
exp (−

1

2
∑[yi − hi(θ)]TR−1[yi − hi(θ)]

k

i=1

) (10) 

 

Where |R| denotes the determinant of the diagonal covariance matrix R, and nθ  denotes the 

number of parameters to be identified. The diagonal entries of the covariance matrix R are piled 
in a row vector called the simulation error variance vector, where rj denotes the jth diagonal entry 

of R matrix (|R| = ∑ rj
nθ
j=1 ). The objective function of the optimization problem is then given by: 

 J(θ)= − ln p(y|θ) (11) 
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 J(θ)=
knθ

2
ln 2π +

k

2
∑ ln rj

nθ

j=1

+
1

2
∑ ∑

[yi − hij(θ)]
2

rj

k

i=1

nθ

j=1

 (12) 

Following Equation 6, the extended estimation problem can be defined as the following 
optimization problem: 

 θ̂= arg min J(θ) (13) 

The most probable value θ̂ is determined by minimizing J(θ) in Equation 13, which requires the 
computation of the gradient vector of the objective function with respect to the estimation 
parameters. The nonlinear optimization problem formulated in Equations 12 and 13 can be solved 
through gradient‐based optimization methodologies, such as the conventional least-squares 
method for parameter estimation. The computational optimization algorithm available as part of 
the MATLAB optimization toolbox is used herein. 

 

Parameter estimation uncertainty quantification 

Parameter uncertainty is usually described by a covariance matrix. The covariance matrix 
estimation result can be asymptotically converged to the Cramér-Rao lower bound (CRLB). The 
CRLB is often calculated using the Fisher information matrix (FIM) denoted as I(θ, r). 

 I(θ, r)= [
Iθθ 0
0 Irr

] (14) 

where Iθθ and Irr are sub-matrices. In this case, the hysteretic model parameter vector θ present 

time‐invariant unknown parameters, which are modelled as random variables denoted by Θ. 

Considering that the FIM is a block matrix defined by expectations E{∙} , the CRLB for the 
covariance matrix is often computed as: 

 Cov(Θ) ≥Iθθ
−1 (15) 

Therefore, the sub-matrix Iθθ ∈ ℝnθ×nθ  can be written as: 

 Iθθ =E {(
∂ ln p(y|θ)

∂θ
)

T

(∂ ln p (
y|θ

∂θ
))}

at θ,r

 (16) 

 Iθθ =E {∑ [(
∂hi(θ)

∂θ
)

T

R−1(yi − hi(θ))]

k

i=1

∑ [(yj − hj(θ))
T

R−1 (
∂hj(θ)

∂θ
)]

k

j=1

}

at θ,r

 (17) 

 Iθθ = ∑ ∑ [(
∂hi(θ)

∂θ
)

T

R−1E [(yi − hi(θ)) (yj − hj(θ))
T

] R−1 (
∂hj(θ)

∂θ
)]

k

j=1

k

i=1 at θ,r

 (18) 

 Iθθ = ∑ [(
∂hi(θ)

∂θ
)

T

R−1 (
∂hi(θ)

∂θ
)]

k

i=1 at θ,r

 (19) 

It can be shown that the FIM is equal to the negative of the expected value of the Hessian matrix 
of the log-likelihood function evaluated at the true value of the vectors θ, r. It is worth noting that 

θ̂ and r̂ converge asymptotically to θ and r, respectively, and therefore, the parameter estimation 

covariance matrix asymptotically converges to the CRLB computed at θ̂ and r̂. The diagonal 
entries are used to describe the variance of the estimated parameters. Assuming that the 
obtained covariance matrix usually has nonzero off-diagonal entries, and these entries may have 
a significant influence, the Schur complement method provides an effective way to calculate the 
variance of each individual parameter (Cao et al 2019). If the model parameter vector θ  is 

partitioned in two parts θ = [θ1
Tθ2

T], the Iθθ matrix is partitioned in four blocks as: 

 Iθθ= [
I11 I12

I21 I22
] (20) 

Finally, the CRLB of the covariance matrix of the estimation of θ1 can be found using the 

generalized Schur complement of I11 in Iθθ: 
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 Cov(Θ1)≥(I11 − I12I22
−1I21)

−1
 (21) 

In the presence of a single realization of the experimental response data, the expectation 
operation can be dropped and the FIM can be approximated by the negative of the Hessian of 
the log-likelihood function. For such MLE optimization algorithms, computing the FIM using the 
Hessian matrix at the converged optimal point would be at no additional computational cost. 

 

Results and analysis 

Experimental response 

Figure 3 shows the lateral load versus lateral top displacement of the specimens under study. W1 
specimens show an evident regularity in the results achieved for their 4 elements, both in terms 
of strength and strain. A maximum drift of 2.97% and a capacity of 213 kN are achieved. Their 
nominal capacity is 151 kN. In both cases (CM and EM), the displacements are achieving a 
percentage of approximately 80% of the total drift. This means that the structural capacity of the 
element is determined by the vertical reinforcement, with a significant participation from the ɸ12 
mm diameter lining located in the border elements together with the distributed mesh. For the W2 
specimens, similarity results are obtained. The maximum drift recorded is 2.96% and the strength 
is 719 kN. Their nominal capacity is 553 kN. In both cases, the displacements are achieving a 
percentage of approximately 70% of the total drift. This means that although the structural 
behaviour of the element is strongly influenced by the performance of the boundary 
reinforcement, the double curtain demonstrates a greater participation in the resistance than in 
W1 specimens. In the case of W3 specimens, the CM response also has a slightly higher ductility 
than the EM. The maximum drift recorded is 2.06% and their capacity is 569 kN. The nominal 
capacity is 412 kN. The peak displacement recorded in the EMA and EMB is approximately 20% 
less than that of the CMA and CMB specimens. The W4 specimens register incipient differences 
in ductility, where the structural elements built with conventional reinforcement achieve slightly 
higher displacements (differences close to 20%), managing to complete a greater number of 
cycles for a given displacement level. The maximum drift recorded is 2.26% and the capacity is 
564 kN. The nominal load is 433 kN. The responses show that reducing the wall thickness 
reduces their ductility and capacity compared to those illustrated in thicker wall responses. Lateral 
load degradation is also observed to be faster once the capacity is achieved, but in general, these 
specimens present similar ductility characteristics. 

 

    
(a) W1 CM. (b) W2 CM. (c) W3 CM. (d) W4 CM. 

    

(e) W1 EM. (f) W2 EM. (g) W3 EM. (h) W4 EM. 

Figure 3. Experimental response of RC walls with conventional mesh (CM) 
and electrowelded mesh (EM).  
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Bayesian identification of multilinear model 

The parameter vector of the multilinear hysteretic model to be identified using the Bayesian 
approach is 𝜃 = [𝑑𝑌, 𝑑𝑆, 𝐹𝑌, 𝐹𝑆, 𝐹𝑃] , where 𝑘𝐼 = 𝐹𝑌/𝑑𝑌  and 𝑘𝑅 , 𝑘𝑈  can be obtained using the 
optimized parameters. A direct calibration of the slopes is not considered in the parameter vector 
to make the Bayesian problem identifiable. The maximum displacement 𝑑𝑈 and the ultimate load 
of the RC wall response 𝐹𝑈  can be directly determined from the test data. Figure 4 shows 
examples of fitted curves using the proposed multilinear model, while Figure 5 shows the 
parameter evolution over number of cycles for walls W1 using Bayesian estimation. It is observed 
from these figures that the hysteretic curves capture very well the parameters of displacement 
and strength. The parameters observed in Figure 5 tend to increase with the number of cycles for 
the 5 calibrated parameters, particularly for displacements and pinching strength. Yield strength 
and degradation strength increase after ultimate load, and then remain constant afterwards 
(between cycles 10 and 20 approximately) until wall failure. The uncertainty in the calibrated 
parameters, represented in this case as the diagonal values of the covariance 𝜎, presents the 
highest values at the beginning of the tests for all RC walls, reducing drastically afterwards and 
tending to zero as observed in the examples of Figure 6. This is because the measured data is 
imprecise for displacements of less than 10 mm in the first cycles. 

 

    
(a) W1 CMA. (b) W2 EMA. (c) W3 EMA. (d) W4 EMB. 

Figure 4. Measured and fitted hysteretic curves using multilinear model. 

 

  

(a) 𝑑𝑌. (b) 𝑑𝑆. 

   

(c) 𝐹𝑌. (d) 𝐹𝑆. (e) 𝐹𝑃. 

Figure 5. Bayesian parameter identification of W1 using multilinear model. 
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(a) W1 EMB. (b) W2 CMA. 

Figure 6. Examples of variance evolution for each cycle using multilinear model. 

 

Bayesian identification of Bouc-Wen model 

The parameter vector of the original BW hysteretic model to be identified using Bayesian 
approach is 𝜃 = [𝐴, β, γ, 𝑛, α, k0]. Figure 7 shows examples of fitted curves using the proposed BW 
model, while Figure 8 shows the evolution of parameter values over number of cycles for walls 
W4. The hysteretic responses are well-fitted, however there is a low accuracy in the curve close 
to the pinching zone and the strength degradation. This is because the original BW model does 
not incorporate these variables. The parameters presented as examples in Figure 8 show a 
tendency towards the zero value in most of the tested walls W4. In general, the uncertainty 
evolution in the calibrated parameters presents higher values than those observed in the 
multilinear model, as depicted in the examples of Figure 9. This is attributed to the fact that the 
BW class model does not incorporate essential parameters that allow the response to be better 
modelled, such as pinching or strength degradation. This also implies a higher computational cost 
for Bayesian identification in terms of convergence. 

 

    
(a) W1 EMA. (b) W2 CMB. (c) W3 EMB. (d) W4 EMA. 

Figure 7. Measured and fitted hysteretic curves using Bouc-Wen model. 

 

   

(a) 𝐴. (b) 𝛽. (c) 𝛾. 
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(c) 𝑛. (d) 𝛼. (e) 𝑘0. 

Figure 8. Bayesian parameter identification of W4 using Bouc-Wen model. 

  

(a) W1 CMA. (b) W4 CMA. 

Figure 9. Examples of variance evolution for each cycle using Bouc-Wen model. 

 

Photogrammetric results 

Figure 10 illustrates that the slender walls W1 and W2 show a concentration of vertical strains 
𝜀𝑦𝑦 at the base of the structural element, where the greatest strains of the longitudinal bars also 

occur in the same area where concrete detachment is observed during the test. Regarding its 
respective experimental and fitted hysteretic response of W1 and W2 specimens, a maximum 
total drift of approximately 3% is reached. This implies that the failure of slender RC walls is 
conditioned by flexure, which coincides with that obtained by DIC. In contrast, walls W3 and W4, 
with maximum total drifts between 2% and 2.3% respectively, show diagonal failures on the front 
surface of the structural element observed by horizontal strains 𝜀𝑥𝑥. Additionally, the work by 

Massone et al. (2021) concludes that the relationship between the horizontal strain 𝜀𝑥𝑥 and the 

shear strain 𝛾𝑥𝑦 is slightly nonlinear in RC panels. Thus, this implies that the squat RC walls are 

conditioned by the shear stress in relation to the behaviour of the horizontal expansion observed 
by DIC. Finally, failure modes observed by photogrammetry are properly well fitted using both 
models, which implies that Bayesian approach can calibrate flexural and shear components. 

    

(a) W1 EMB (𝜀𝑦𝑦). 

Drift = -3.0%. 

(b) W1 EMB (𝜀𝑦𝑦). 

Drift = +3.0%. 

(c) W3 EMA (𝜀𝑥𝑥). 
Drift = +1.6%. 

(d) W4 EMB (𝜀𝑥𝑥). 
Drift = -1.8%. 

Figure 10. Strain fields of RC walls.  
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Conclusions 

A set of 16 specimens consisting of RC walls with conventional steel and ductile electrowelded 
mesh was examined in this paper. A description of some of the experimental findings and 
measurements made is provided below: 

• The experimental results show that the response of the structure is only marginally 
influenced by the type of steel used in the mesh (i.e., whether conventional steel CM 
A630-420H, or ductile electrowelded steel EM A630-420HS is used). Although the 
observed differences affect their ductility, both solutions have significant deformation 
capacities, where the serviceability of the structure is not altered. This means that the 
differences in ductility (approximately 20% lower in the EM solution) are evident after 
important damage has already taken place on these elements, e.g., from 1.3% drift for 
W3 and 1.8% for W4, when their yield values are approximately 0.6% and 0.8%, 
respectively. The double curtain is applied mainly as vertical reinforcement (consistent 
with the crack patterns) and, in general, no appreciable damaged was observed in this 
area. The interference of the mesh in the capacity of the elements gradually increases in 
specimens W2 and W4.  

• A Bayesian approach is employed to identify the parameters of a multilinear model and 
a BW model. The calibrated samples showed good agreement with a wide range of 
collected data, and a good agreement was also observed between the hysteretic 
parameters of the models and test results. The parameters of the ML model show an 
increase in their values as the cycles increase, and their uncertainty decreases and 
tending to zero until failure. In contrast, the parameters of the BW model generally remain 
constant during the experimental test, however, its uncertainty is slightly greater than that 
of the ML model. This is because parameters, such as pinching or strength degradation, 
are not incorporated into the latter model, so the fit with the data curve is less accurate. 

• Contrary to conventional sensors, photogrammetry allows strain distributions and failure 
patterns of RC elements to be observed directly. For slender walls dominated by flexure, 
it is observed that the strain concentration is located at the wall boundaries. In contrast, 
diagonal failure modes are observed on the panel for squat walls conditioned by shear. 
It is noteworthy that flexure and shear failures observed by DIC are highly well captured 
by Bayesian parameter identification, which means that the models can calibrate both 
failure responses. 
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