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Abstract: Accurate prediction of the response of structures subjected to close proximity blast 

loads is a pressing engineering concern; the landscape of global terror has shifted away from 

large and indiscriminate bombings towards much smaller and more targeted attacks (e.g. against 

critical infrastructure and/or transport). In such close-proximity blast events (in the so-called 

‘nearfield’), interaction between the expanding detonation products and air shock gives rise to 

complex hydrodynamic features which introduce localised variations in the pressure field. The 

resultant loading (typically defined in terms of specific impulse since loading durations act on 

timescales considerably shorter than structural response) is therefore highly uncertain, and even 

nominally identical experiments produce loading distributions with a high degree of local 

variability. Current predictive approaches either grossly simplify or neglect entirely the inherent 

‘fuzziness’ of nearfield blast loading, to the extent where it is currently unknown what effect this 

has on structural response, how sensitive plate structures are to uncertainties in loading 

distribution, and how this varies with plate properties and loading condition (e.g. charge mass and 

stand-off distance). This paper presents a numerical study aimed at answering these questions, 

where specific impulse distributions are probabilistically simulated with varying degrees of 

localised variations and mapped onto a range of different plates. This work aims to shed light on 

the fundamentally stochastic nature of close-proximity blast, with a view to implementing the 

findings in fast running engineering models for prediction of plate response under near-field blast 

loading.  

Introduction  
If blast protection engineers are to protect structures against targeted explosive attacks then the 

tools need to be available for predicting structural response to close proximity loading. It is 

particularly important in the near-field where the magnitude of pressure is greatest and time 

duration of loading is small (Tyas, 2019). It is in this region that attackers can cause significant 

damage to key structural members or protective apparatus.  

During near-field loading the expanding detonation product cloud (DPC) is still in contact with the 

blast wave (Tyas, 2019). In an idealised scenario a target in close proximity to an explosive charge 

will experience a centrally localised specific impulse distribution (Pannell et al., 2021). However, 

interactions between the DPC and shock wave result in a hydrodynamically complex environment.  

During the early/extreme near-field, loading is consistent with little variation (S E Rigby et al., 

2020; Pannell et al., 2021). However, as scaled distance increases into the late near-field, 

hydrodynamic structures such as Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities 

develop and grow (Fuller et al., 2016; Tyas et al., 2016; S. E. Rigby et al., 2020). These instabilities 

are formed at the fluid interface between the DPC and shock wave, where a light fluid (DPC) 

accelerates into a heavy fluid (compressed air within the shock wave) (Zhou et al., 2021) and can 

form protrusions within the fireball. These hydrodynamic structures give rise to spatially complex 

and variable blast loading that is stochastic in nature (S E Rigby et al., 2020). When impinging on 
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a plate this can result in off-center or asymmetric loading of the plate, as well as a locally increased 

specific impulse.  

Testing was performed by Rigby et al. (2019) on cylindrical and spherical charges at two scaled 

distances (to account for directional loading of cylindrical charges). The study noted a marked  

  
increase in variability and loading offset in the case of the larger stand-off cylindrical charges, 

which was attributed to the formation of RT and RM instabilities. Balakrishnan et al. (2010) found 

that the formation of these instabilities is exacerbated by charge surface imperfections, meaning 

two nominally identical tests can result in vastly different loadings.   

These complicated interactions between the DPC and shock wave make near-field blast loading 

inherently variable and stochastic. If protective engineers are to accurately predict blast loading 

in the near-field, then they must fully account for this intrinsic variability. In order to do this, 

fastrunning predictive models should move away from a deterministic approach and instead 

employ probabilistic methods to assess loading and structural response. Only in this way can the 

full range of loading and deflection outcomes be captured.  

This paper presents a series of Monte Carlo analyses of structural response using numerical 

modelling to determine structural plate response to variable loading profiles impinging upon it. In 

this way several factors of variability are assessed by their effect on plate response variability.  

Method of Analysis  
In order to perform a numerical study of a near-field blast loaded plate, models of both loading 

distribution and the resultant structural response were employed. The models used to determine 

these parameters are described below.  

Specific Impulse Model  

To evaluate the specific impulse distribution applied across the plate or target structure, a loading 

model established by Pannell et al. (2021) was used. This model is shown in equation 1.  

  𝑖(𝑍, 𝜃, 𝑊) = 0.557𝑍−1.663𝑒−2007 𝜃 𝑊1⁄3  (1)  

For 0.11  Z  0.55 m/kg1/3, where i – specific impulse (MPa.ms); Z – scaled distance (m/kg1/3) ; θ 

– angle of incidence (°); W – charge mass (kg).  

The model developed by Pannell et al. (2021) describes an idealised specific impulse profile 

where the localisation centre coincides with the centroid of the plate. To model asymmetric loading 

within this study, the localisation centre was offset by altering the angle of incidence coordinate 

system. All specific impulse distributions in this study were evaluated using a charge mass of 80g.   

 

Figure 1: Specific impulse distributions derived using model presented by Pannell et al. (2021) 

at both scaled distances used within this study.   
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Numerical Model  

A lagrangian finite element model was created using LS-DYNA (Hallquist, 2006), to model a 

400x400x3 mm square DOMEX 355 MC steel plate with a mesh density of 2 mm. All four sides 

of the plate were restrained against all translation and rotation. The plate was modelled using a 

simplified Johnson-Cook material model of the same parameters and properties as those used in 

studies by Rigby et al. (2019) and Rigby et al. (2021).  

The specific impulse distribution impinging on the plate was converted to initial velocities and 

applied at each node using the *INITIAL_VELOCITY_NODE keyword. The results were then used 

to determine the maximum displacement of the plate, zmax.  

Monte Carlo Analyses  

Due to the inherent variability and stochastic nature of near-field blast loading, a probabilistic 

approach has been used to define the maximum displacement of a plate in close-proximity to an 

explosive charge. A series of Monte Carlo analyses have been undertaken, where variable input 

parameters are sampled from a pre-determined probability distribution which describes both the 

magnitude and variability of that parameter. Each sample input is run through the specific impulse 

and LS-DYNA plate models described above. By running multiple sample models and recording 

the zmax results, the output probability distribution can be determined for the given input 

distribution.  

In this family of Monte Carlo analyses, three variable input parameters are used:  

• Scaled Distance  

• Localisation Centre Offset in the x direction  

• Localisation Centre Offset in the y direction  

Analyses are performed at two scaled distances (0.172 m/kg1/3 and 0.415 m/kg1/3) and each 

variable input parameter is sampled from a normal distribution. Two different normal distributions 

are used for each input parameter to represent “Small” and “Large” variation of loading. The 

distribution parameters are shown in Table 1.  

Input  

Parameter  

Variation  Mean Value, μ  Standard  

Deviation 

, σ  

Normalised Standard  

Deviation σ/ 

σ/Plate Width  

μ  or  

Type  

Scaled  

Distance, Z  

Large  0.172 or 0.415 

m/kg1/3  

0.166 

m/kg1/3  

0.4    Normal  

Small  0.172 or 0.415 

m/kg1/3  

0.021 

m/kg1/3  

0.05    Normal  

Fixed  0.172 or 0.415 

m/kg1/3  

-  -    -  

x Offset  Large  0 mm  80 mm  0.2    Normal  

  Small  0 mm  20 mm  0.05    Normal  

y Offset  Large  0 mm  80 mm  0.2    Normal  

  Small  0 mm  20 mm  0.05    Normal  

Table 1: Parameters for input probability distributions used in Monte Carlo analyses.  

  

Figure 2: Illustration of Monte Carlo analyses undertaken in this study.  

Two separate families of Monte Carlo Analyses were performed:  
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• Set A – values of offset in the x and y direction are sampled from the Small or Large 

probability distributions and are therefore variable for each sample model. Scaled distance 

is kept constant for each sample model (i.e. either 0.415 or 0.172 m/kg1/3).  

• Set B - Offset in x and y direction are kept variable as in Set A, whilst scaled distance is 

sampled from either the Small or Large distributions and is therefore variable for each 

sample model.  

In both Set A and B, Monte Carlo analyses are performed for “Large” and “Small” variation of the 

input parameters at both scaled distances. This results in a total of 8 Monte Carlo analyses, as 

summarised in Table 2.  

Set  Analysis  Sample Models  Z [m/kg1/3]  X Offset [mm]  Y Offset [mm]  

μz  σz  μx  σx  μy  σy  

A  i  30  0.415  -  0  80  0  80  

ii  30  0.415  -  0  20  0  20  

iii  30  0.172  -  0  80  0  80  

iv  30  0.172  -  0  20  0  20  

B  v  30  0.415  0.166  0  80  0  80  

vi  30  0.415  0.021  0  20  0  20  

vii  30  0.172  0.166  0  80  0  80  

viii  30  0.172  0.021  0  20  0  20  

Table 2: Summary of Monte Carlo Analyses performed.  

Results and Discussion  

 

Figure 3: Histograms of zmax from Monte Carlo Analysis Set A.  

Ref  Variation  Scaled Distance, Z 

[m/kg1/3]  

Output standard 

deviation, σz [mm]  

Output Mean, µz 

[mm]  

i.  Large Variation  0.415  1.805  16.844  

ii.  Small Variation  0.415  0.123  18.348  

iii.  Large Variation  0.172  3.060  30.027  

iv.  Small Variation  0.172  0.458  32.906  

Table 3. Results from Monte Carlo Analysis Set A  
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Figure 3 displays histograms of maximum displacement (zmax) of each model for the four Monte 

Carlo analyses performed in Set A. As previously discussed, the only source of input variation for 

Set A is from offset of the specific impulse localisation centre. The mean and standard deviation 

values of each output sample are shown in Table 3.  

By qualitatively comparing the histograms at the two scaled distances, it seems that when 

Z=0.415 m/kg1/3 there appears to be a skew towards larger values of zmax, meaning smaller values 

are  more variable. This infers that as the offset of the localisation centre moves towards the 

restrained edges of the plate, which is when smaller values of displacement will be achieved, then 

zmax is more variable. It should be noted that to determine the output distribution shape more 

accurately, more models should be run. However, these analyses serve to give a general 

description of skew or variability in model outputs.  

It is clear from the values in Table 3 that zmax was more varied at the smaller scaled distance 

(0.172 m/kg1/3) when the input variation is the same (comparing iii and iv). This is likely due to the 

magnitude of specific impulse being globally greater at a smaller scaled distance and the degree 

of spatial localisation also being increased. This result would be true if the probability/likelihood 

of variation in loading was the same at both scaled distances. However, the findings of various 

studies that instabilities increase as the DPC grows (i.e. as scaled distance increases) (Fuller et 

al., 2016; Tyas, 2019; S E Rigby et al., 2020) and that specific impulse distributions are more 

consistent and subject to less variability in the extreme near-field (Rigby, Tyas, et al., 2019; 

Pannell et al., 2021) show this not be the case. This means a more physically valid comparison 

would be between the results of the Small input variation at Z=0.172 m/kg1/3 and the large input 

variation at Z=0.415 m/kg1/3 (i against iv). In this case a significantly greater standard deviation of 

zmax is seen at the larger scaled distance. Although the values of input variation were selected  

with little physical evidence they serve as an indication of how input variability, which is affected 

by scaled distance, relates to output variability.  

 

Figure 4: Histograms of zmax from Monte Carlo Analysis Set A.  

  

  

Ref.  Variation  Scaled Distance,  

Z [m/kg1/3]  

Output standard 

deviation, σz [mm]  

Output Mean, µz 

[mm]  

v.  Large Variation  0.415  5.898  17.577  

vi.  Small Variation  0.415  0.439  18.268  
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vii.  Large Variation  0.172  16.230  35.441  

viii.  Small Variation  0.172  1.581  33.043  

Table 4. Results from Monte Carlo Analysis Set B  

Figure 4 shows the histograms of the zmax output distribution for Monte Carlo analysis Set B. In 

these models the scaled distance input value was varied, as well as the offset of localisation 

centre. This is indicative of the plate being subjected to a protrusion within the DPC or charge 

shape directionality causing a greater or smaller impulse at the plates location (e.g. a cylindrical 

charge may cause a larger impulse on the plate from its axial blast wave than a spherical charge 

at the same stand-off distance).   

Comparing values in Table 4 to their respective results in Set A, the standard deviation of zmax is 

significantly increased: 3.3 - 3.6 times greater at Z=0.415 m/kg1/3 and 3.5 - 5.3 times greater at 

Z=0.172 m/kg1/3. This suggests that either variation in specific impulse is more significant in its 

effect on zmax or  its combined effect with offset variation results in a far more significant spread 

in output results. Similarly to Set A variation of zmax is far more significant at the smaller scaled 

distance when input variation is consistent, which does not account for the interaction between 

scaled distance and loading variability seen in other studies.  

Inspection of histograms v and vii shows that large input variations result in a skew of the output 

distribution probability to smaller values of zmax. This suggests that models with larger plate 

deformations are more variable in their maximum response. This can be explained by peak 

specific impulse increasing exponentially as scaled distance decreases (Pannell et al., 2021), 

meaning small increases of input scaled distance results in increasingly larger magnitude loadings 

and therefore greater changes in maximum displacement.   

Comparing Figures 4vii and 3iii demonstrates how the skew of the output distribution has been 

reversed completely when considering a large input variation at Z=0.415m/kg1/3.This again 

suggests that either variation of input scaled distance is more dominant in its influence on 

displacement than offset of the localisation centre, or that the combined effects of both completely 

alters the output distribution of zmax.  

Probabilistic Approach to Fast-Running Models  

To demonstrate how a probabilistic approach can be used to quickly establish structural response, 

the distributions shown in histograms i-viii were individually fit to either a Normal or Weibull 

distribution depending on the skew of the data. The cumulative probability density function was 

then plotted for each and are shown in Figures 5 and 6. Using these plots, a blast engineer can 

determine the likelihood any zmax value is not exceeded for a specified variability of loading.  

To more accurately model the distributions generated by each Monte Carlo Analysis, the number 

of sample models should be increased. However, the use of thirty models was significant enough 

to estimate mean, skew and variance of each output distribution and therefore serves to 

demonstrate how probabilistic methods can be utilized to define structural response to near-field 

blast loading.  

The most significant limitation of Figures 5 and 6 is that they can only estimate displacement 

probability for the input variations and scaled distances specified within this study. Furthermore, 

the variability of the input loading distributions is not physically or experimentally informed. 

However, it’s been shown that formation and development of instability structures and protrusions 

within the DPC is affected by scaled distance (Tyas, 2019; S E Rigby et al., 2020). This means 

that if the relationship between the inherent loading variability caused by instabilities in the DPC 

and scaled distance can be defined then probability plots such as Figures 5 and 6 can be defined 

for a range of scaled distances. In this way a means of rapidly assessing the likelihood of a given 

structural response can be achieved.  
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Figure 5: Plots of Cumulative probability distribution for continuous distributions fitted to the 

results Monte Carlo analyses performed at a scaled distance of 0.172 m/kg1/3 in Set A and B.  

 

Figure 6: Plots of Cumulative probability distribution for continuous distributions fitted to the 

results Monte Carlo analyses performed at a scaled distance of 0.415 m/kg1/3 in Set A and B.  

Summary and Conclusions  
This study aimed to demonstrate how probabilistic methods can be used to tackle inherent 

variability in near-field blast loading and help determine structural response. This was achieved 
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using a family of Monte Carlo analyses consisting of 240 models. The key findings and points of 

this study can be summarized as follows:  

• Variation in blast loading specific impulse distributions results in a variable plate response. 

• Variance in scaled distance parameters combined with changes in loading localization 

offset causes a far greater degree of maximum plate displacement variability than if scaled 

distance variability is ignored.  

• If variance of loading parameters is considered constant at all scaled distances, then 

maximum displacement becomes more changeable at smaller scaled distances if variability 

of loading is not modelled against scaled distance in a physically informed manner.  

• Probabilistic methods can be used to rapidly identify the probability of a given displacement 

of a structure being achieved if the loading variability is known.  

• Interaction between scaled distance and inherent loading variability needs to be defined if 

near-field blast loading and plate response are to be modelled using fast-running methods.  
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