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Abstract: The assessment of human injuries and structural damage following the detonation of 
a high explosive requires an understanding of blast load parameters. Use of physical experiments 
or physics-based numerical tools require large amounts of time and expertise, often restricting 
their use to deterministic analyses. Since explosive events are inherently unpredictable and key 
variables (e.g. charge size, mass, composition, location) may not be known a priori, there is a 
clear need for rapid analysis tools that can embrace this uncertainty in a probabilistic framework. 
Machine learning tools have been developed for this purpose, however, the features of the 
problem that are selected as model inputs can result in predictions being fixed to a single domain, 
thus requiring the tool to be retained for every new scenario. This paper details how the 
Directionencoded Neural Network (DeNN), a novel Machine Learning method, takes inspiration 
from the operation of robot vacuum cleaners to prevent this issue by considering the surroundings 
of each prediction point. Through comparisons to a traditional Artificial Neural Network (ANN), 
provided with global domain inputs, it is shown that the DeNN’s unique feature selection process 
allows for predictions in domains of variable sizes with movable obstacles, ultimately producing 
a tool that can be used in a range of studies without requiring additional task-specific training.  

Introduction  
With the continual presence of terrorist attacks, conflict and industrial accidents occurring all over 

the world, understanding the risk associated to the detonation of explosive materials is vital for 

designing and developing protective structures and procedures that can reduce any detrimental 

impact on human life. A key component of this involves developing an understanding of how the 

blast wave that emanates from an explosive compound propagates and interacts with its 

surroundings.  

Historically this was achieved using physical experiments in controlled test environments where 

the number of trials, extractable data points and variety of test scenarios is limited by cost, safety 

and expertise. However, the evolution of widely available computing power has meant that this 

approach is often replaced by validated numerical methods that can be evaluated without data 

limitations or health and safety risks.  

Semi-empirical tools, such as the Kingery and Bulmash method (Kingery and Bulmash, 1984), 

have been derived from experimental trials that enable the relationships between variables to be 

defined by simplified equations and charts. The can therefore be implemented rapidly with a 

reduced number of inputs, yet, this also restricts their use to a limited range of modelling 

scenarios. Conversely, validated Computational Fluid Dynamics (CFD) or Finite Element (FE) 

numerical models, such as Viper::Blast (Stirling, 2023), and LS-DYNA (Livermore Software 

Technology Company, 2015), obey conservation laws in a discretisation of space and time using 

estimated material properties in an attempt to accurately model the physics of the detonation and 

the subsequent wave interaction effects. They are therefore well suited to evaluating diverse 

problems, however, computation times can last many hours or days depending on the complexity 

of the problem and the desired level of predictive accuracy.  

At present, this computational analysis of explosive events is commonly performed using 

deterministic approaches, providing a single output to a well-defined problem. However, many 

researchers note that this ignores the variability of the explosion itself and the inherent uncertainty 
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associated to the charge size, shape, location and material that is characteristic of the situations 

where explosions occur. Probabilistic approaches, such as the one shown in Figure 1, are 

therefore becoming more common so that the risk associated to a specific outcome can be 

evaluated. Here, various input variables are randomly sampled from independent probability 

distributions 100 times. Each unique input combination is evaluated using a deterministic model 

with the outputs forming probability distributions that enable the risk of specific occurrences to be 

understood and used in decision making processes.  

  

 
  

Figure 1. Example probabilistic framework.  

Clearly, the move towards this approach still relies on a suitable deterministic model that can 

accurately represent the physics of the various scenarios being simulated. Moreover, the chosen 

model must be rapid in its execution of each unique scenario so that the time required to develop 

a comprehensive understanding of the threat is not unfeasible.  

This paper discusses recent progress made in this field in terms of the development of Machine 

Learning (ML) tools for blast load predictions that provide accuracy and reduced computation 

times for a range of scenarios. It is shown how consideration of an additional variable, versatility, 

is also essential when developing fast running engineering models (FREMs) that can be useful in 

a range of probabilistic scenarios.  

Machine Learning in Blast Engineering  

Background and example applications  

The requirement for rapid analysis tools to evaluate large batches of models in probabilistic 

frameworks with limited computational expense is highlighted by Figure 2. Here, a target zone is 

positioned such that the combination of rapid execution from the semi-empirical, quick running 

methods is met by the accuracy of the physics-based numerical models.  

Machine Learning methods present a means of achieving this goal due to their simplified 

calculation approaches that have been shown to provide low percentage errors and high 

correlation coefficients between targets and predictions in a wide range of disciplines. In simple 

terms ML tools learn the relationships between a series of input variables during a training process 

that optimises various parameters to improve the predictive accuracy of the model. The setup of 

each tool is initially dictated by a range of bespoke hyperparameters that control the structure and 

training progress, however, these can be tuned during development. This enables ML based 

approaches to generalise highly complex, multi-parameter problems to generate predictions for 

unseen inputs combinations, provided that they fall within the bounds of the training variables 

(Dennis et al., 2021).  

There are many instances of ML tools being used to solve problems related to Blast Engineering, 

including applications for near field loading, obstructed environments and behind blast walls. Table 

1 provides a summary of a select range of studies to highlight the diversity in the way that problem-

specific blast load predictions are generated.  
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Figure 2. Comparison of model computation time and solution accuracy, showing the zone that is 

commonly considered to be a target for the development of fast running engineering models 

(FREMs).  
Reference  Machine 

learning tool  
Scenario  Inputs  Output(s)  

Dennis et al. 

2021  
Multi-layer 

perceptron  
Partially internal  

room  
POI x and y coordinate. Charge x 

and y coordinate. Charge size  
Peak Overpressure  

Pannell, Rigby 
and  

Panoutsos,  
2022a  

Transfer neural 

network  
Near field panel 

loading  
Angle of incidence. Scaled 

distance. Length/diameter ratio.  
Peak specific 

impulse  

Pannell, Rigby 
and  

Panoutsos,  
2022b  

Physics guided 

neural network  
Near field panel 

loading  
Angle of incidence. Scaled 

distance.  
Peak specific 

impulse  

Remennikov 
and Rose,  

2007  

Multi-layer 

perceptron  
Effectiveness of blast 

walls  
Wall, charge and target height.  

Distance from wall to target. 

Distance from wall to charge. All 

scaled according to charge size.  

Peak overpressure 

and specific impulse  

Li et al., 2023  Transformer 

neural network  
Free air  Tank failure pressure. Liquid fill 

ratio. Tank width, height and  
length. Explosive material height.  
Vapour and liquid temperature.  
Liquid status. Vapour height and 

stand-off distance.  

Peak overpressure  

Zahedi and 

Golchin, 2022  
XGBoost  Protruded structure  Protrusion length and height, 

charge size and stand-off, POI x, 

y and z coordinates.  

Peak overpressure 

and impulse  

  

Table 1. Applications of Machine Learning tools in blast related literature. Some inputs refer to a 

POI – point of interest.  

Each study presents notable developments related to how ML based tools could be created. For 

example, Pannell, Rigby and Panoutsos (2022) trained a neural network (NN) to predict the 

specific impulse from the detonation of cylindrical charges that incorporated a NN that was 

previously trained to predict the output from spherical charges. This transfer network ultimately 

enabled a reduction in prediction variability when compared to a new NN that had no integration 

with previous data. Furthermore, the gap in performance continued to increase as the training 

dataset reduced, showing the transfer learning can be used to supplement problems where data 

collection is challenging.  

  

Q uick - running methods   
 Not based on physics   
 Very quick   
 “Good enough” accuracy   
 Probabilistic   

Physics - based modelling   
 Finite element modelling or  

computational fluid dynamics   
 Time - varying solutions   
 Requires validation   
 Deterministic   

Target zone   

Model  computation time   
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Similarly, Li et al. (2023) present a comparative study between a Gradient Boosted Decision Tree 

(GBDT), a multi-layer perceptron, an image recognition based Residual Network (ResNet), and a 

Transformer NN. Despite this type of network originally being developed to process sequential 

data (Vaswani et al., 2017), for the specific application, data processing approach and 

hyperparameter limitations applied in this study, the transformer was shown to provide the most 

accurate predictions for a regression based task. Li et al. (2023) therefore conclude that this 

approach provides the best performance, drawing attention to how many previous studies have 

defined the ‘best’ performing tool as the one with the lowest prediction errors, ignoring the 

requirements for training data, training time, and resulting tool versatility.  

Model versatility  

The idea of tool versatility is worth noting as ML models progress to deployment and use in 

industry based applications. In each example provided in Table 1 the input parameters are 

intrinsically linked to the scenario being modelled. In some cases this means that a change to the 

basic domain arrangement would require a new model to be developed. For example, in the study 

by Dennis et al. (2021), Cartesian coordinates are used to define where the point of interest (POI) 

and charge are positioned in a fixed domain. If a user required predictions in a domain of a 

different size or shape, the developed tool would not be able to provide reliable predictions, thus 

necessitating an entirely new training process with a new dataset.  

It is common for training datasets to be formed through a data collection process that requires the 

simulation of tens, or hundreds, of physics-based numerical models that encompass the problem 

the tool is being developed to model. In situations where the developed tool is only applicable to 

a select range of explosive scenarios, the computation time associated to its development can 

therefore become comparable to exclusively using numerical models in the analysis of a given 

problem. For some ML based applications that are thought of as being positioned around the 

target zone of Figure 2, the underlying cost of development is ignored despite this being a key 

factor in determining if a tool is useful in practice.  

  

 

Figure 3. The proposed target zone for FREM development, incorporating the versatility of the 

tool being produced.  

Consequently, Figure 3 provides an updated view of the target zone for FREM development 

considering a new set of axes that includes model versatility. This provides a distinction between 

ML tools that are developed with limited scope for reuse in alternative studies and tools that are 

able to be applied more generally to blast loading based problems. It is shown that the resulting 

network from the study by Dennis et al. (2021) may achieve suitable computation time and 
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accuracy, but it’s limitations associated to varying domain arrangements restricts its versatility and 

use in probabilistic studies where obstacles and alternative domain shapes may need to be 

evaluated.  

The Direction-encoded Neural Network  

Introduction  

An example of a ML tool that aims to provide versatility in its application is the Direction-encoded 

neural network (DeNN) introduced by Dennis and Rigby (2023) and used to analyse a batch of 

models by Dennis, Stirling and Rigby (2023). Through a novel feature engineering process, the 

inputs to the multi-layer perceptron neural network are related to the surroundings of each 

prediction POI instead of any global domain properties. Predictions of peak overpressure can 

therefore be generated for points in obstructed environments of any shape and size, with movable 

obstacles and charge positions.  

Inspired by how autonomous robot vacuum cleaners use ultrasonic or infrared sensors to navigate 

their surroundings (Chiu, Yeh and Lin, 2009; Kang et al., 2014), Figure 3 shows how the inputs to 

the DeNN are formed with 16 directional ‘lasers’ that are projected from the POI. As with robot 

vacuum cleaners, each laser is used to calculate an obstruction distance to a surface. However, 

in this application, if no rigid surface is met, the corresponding directional input equals 0. 

Conversely, identification of a rigid surface means that the directional input is evaluated using the 

following equation:  

  Directional input = max(Wave travel distance – Obstruction distance , 0)  (1)  

  

Where the wave travel distance is calculated as the shortest path between the charge centre and 

each POI on a 2D plane.   

The wave travel distance is also used as an input to the DeNN to complete the set of 17 values 

that are used to form predictions at each individual point in a given domain. As shown in Figure 

3, directional input 1 must point towards the charge centre, removing symmetrical prediction 

issues by allowing the rosette of lasers to rotate relative to the position of the charge.  

 

  

Figure 4. Example application of the DeNN directional inputs. Only 8 directions shown on the 

domain plot for brevity. Note that direction 1 points towards the charge.  

Performance overview  

In the introductory study for this approach by Dennis and Rigby (2023), the authors trained the 

DeNN using 25 domains that featured randomised object counts, object sizes and domain sizes. 

The developed tool can therefore be applied to any domain provided that the inputs associated 

to a new problem fall within the bounds of the original training dataset. This includes a requirement 

for all POIs to have an elevation, and minimum clear distance from the charge, of 1.5m.  
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Figure 5 provides a comparison of two models that conform to these requirements when modelled 

using the numerical solver Viper::Blast and the DeNN.  

 
  

Figure 5. Peak overpressure comparison between the DeNN and Viper::Blast. White regions 

indicate points without a prediction due to being within a rigid obstacle, or the 1.5m exclusion 

zone around the charge.  

Domain  MAE (kPa)  Young’s correlation, 𝑹𝟐𝒕  Average percentage error (%)  

A  3.05  0.9970  9.4  

B  3.76  0.9965  13.4  

  

Table 2. DeNN performance statistics following a comparison with Viper::Blast.  

It is shown that the DeNN is able to qualitatively, and quantitatively, capture the distribution of 

peak overpressure for two unseen domains with sizes and obstacle locations that were not 

included in the development of the tool. The performance statistics shown in Table 2 prove that 

this approach is capable of providing useful results in analyses the evaluation of large batches of 

domains with relative errors below 15%.  

  

 
Cartesian structured network  Direction-encoded Neural Network  
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x coordinate, charge y coordinate.   

 

Point 

A  

  

Point 

B  

  

Comp.   
IA ==  IB  

 y  Charge location  Ambient boundary  

Prediction point, P Shortest wave travel path x 
Directional laser Rigid object  

All dimensions in meters. All rigid objects are 0.5 m wide.  
  

Figure 6. Comparison between how the input pattern is formed for two nominally identical points 

for a Cartesian structured NN versus the DeNN.  

Comparison with previous approach  

As mentioned previously, use of Cartesian coordinates for inputs to a ML tool that aims to model 

an obstructed/internal environment limits is application to scenarios that respect the same 

userdefined origin. The understanding of the relationship between the charge and POI positions 
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is dependent on this fixed location and so obstacles must also remain in the same positions 

relative to this point. The DeNN averts these issues by receiving inputs that are relative to the POI 

itself, meaning the surroundings can change without preventing the tool from being applied.  

Figure 6 provides a simple example of this to highlight the robust nature of the feature set used 

by the DeNN, where two POIs should be predicted with equal overpressures. Considering how 

points A and B are translated to the respective ML models, it is shown that use of Cartesian 

coordinates produces differing input patterns whereas the DeNN (with 8 directional inputs shown 

for clarity) provides consistent inputs to ensure equal predictions.  

  

 Cartesian structured network  Direction-encoded Neural Network  

Model  

  

Training  

 
 

Use  

 

 

  

  

Figure 7. Comparison between an ANN that uses Cartesian inputs and the Direction-encoded 

Neural Network, using inputs that are relative to the POI and the charge.  

In many studies where a similar dependency is present between the POI and some fixed point, 

the relationship between the charge and the POI is dependent on the network’s understanding of 

the overall topology of the output value, instead of the mechanics of the blast wave and the 

interaction effects that will alter its magnitude.  

Considering the benefit of the DeNN in terms of the development of FREMs, Figure 7 presents a 

comparison of the workflows that would be required when using an approach similar to the one 

explored by Dennis et al. (2021) and the DeNN. Using the former approach, a new dataset would 
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locations.   
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training dataset.   
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model to be  
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using new data .   

✓   ✓   

Can predict any domain shape and  
size, with varied obstacle positions.   
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have to be developed for each new application of the ML tool, while the generalised approach 

taken with the DeNN enables its use in a wider range of studies.  

Conclusion  
To conclude, it is well established that Machine Learning (ML) tools are capable of understanding 

the effects caused by the detonation of various explosive materials in a range of scenarios. Many 

studies that focus on this topic produce models with very good accuracy and low computation 

times, yet the versatility of the tool is rarely discussed.   

For predictions in obstructed/internal environments, previous work has relied on globally 

referenced inputs that prevent the developed model from being used if the domain layout is 

required to change. The models are required to understand how the topology of the parameter 

space changes relative to fixed global parameters, as opposed to learning about the blast wave 

and its interactions directly. It was shown that a change to the prediction domain would require an 

entirely new model to be developed, necessitating the collection of more training data that is often 

costly in terms of computation time.  

The Direction-encoded Neural Network (DeNN) therefore predicts peak overpressure based on 

the path that the blast wave has to take to reach the POI, in addition to the surrounding rigid 

reflecting surfaces that create coalescence effects (Dennis and Rigby, 2023). This results in the 

development of a robust model that can evaluate domains of any shape and size, with movable 

obstacles and charges. The approach acts as an example of how novel feature engineering can 

improve the versatility of ML tools that can ultimately be used in probabilistic studies where various 

domain parameters are required to change during the assessment of any given threat.  
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