Overview
SECED 2015 was a two-day conference on Earthquake and Civil Engineering Dynamics that took place on 9-10th July 2015 at Homerton College, Cambridge.
This was the first major conference to be held in the UK on this topic since SECED hosted the 2002 European Conference on Earthquake Engineering in London.
The conference brought together experts from a broad range of disciplines, including structural engineering, nuclear engineering, seismology, geology, geotechnical engineering, urban development, social sciences, business and insurance; all focused on risk, mitigation and recovery.
Conference themes
- Geotechnical earthquake engineering
- Seismic design for nuclear facilities
- Seismic hazard and engineering seismology
- Masonry structures
- Risk and catastrophe modelling
- Vibrations, blast and civil engineering dynamics
- Dams and hydropower
- Seismic assessment and retrofit of engineered and non-engineered structures
- Social impacts and community recovery
Keynote speakers
SECED 2015 featured the following keynote speakers (affiliations correct at the time of the conference):
- Peter Ford and Tim Allmark, Office for Nuclear Regulation, UK
- Don Anderson, CH2M HILL, Seattle, USA
- Bernard Dost, Royal Netherlands Meteorological Institute, The Netherlands
- Anne Kiremidjian, Stanford University, USA
- Rob May, Golder Associates, Australia
- Tiziana Rossetto, University College London, UK
- Andrew Whittaker, University at Buffalo, USA
- Mike Willford, Arup, The Netherlands
Information for authors
SECED allows the self-archiving of the Author Accepted Manuscripts (AAM) from the SECED 2015 Conference. This means that all authors can make their conference paper available via a green open access route. The full text of your paper may become visible within your personal website, your institutional repository, a subject repository or a scholarly collaboration network signed up to the voluntary STM sharing principles. It may also be shared with interested individuals, for teaching and training purposes at your own institution and for grant applications (please refer to the terms of your own institution to ensure full compliance).
To deposit your AAM, please adhere to the following conditions:
- You should include a link back to the SECED website.
- You should include all of the relevant metadata (article title, conference name, conference location, conference dates etc.).
- You should include a clear licensing statement (see below).
SECED allows authors to deposit their AAM under the Creative Commons Attribution Non-commercial International Licence 4.0 (CC BY-NC 4.0). The deposit must clearly state that the AAM is deposited under this licence and that any reuse is allowed in accordance with the terms outlined by the licence. To reuse the AAM for commercial purposes, permission must be sought by contacting seced@ice.org.uk. For the sake of clarity, commercial usage would be considered as, but not limited to:
- Copying or downloading AAMs for further distribution for a fee.
- Any use of the AAM in conjunction with advertising.
- Any use of the AAM by for promotional purposes by for-profit organisations.
- Any use that would confer monetary reward, commercial gain or commercial exploitation.
Should you have any questions about our licensing policies, please contact seced@ice.org.uk.
Earthquake Risk and Engineering towards a Resilient World
9 - 10 July 2015, Homerton College, Cambridge, UK
Insights into Settlement Mechanisms of Shallow Foundations on Liquefiable Layers
- Category: Geotechnical earthquake engineering
- Author: Gopal S. P. Madabhushi, Orestis Adamidis
- Year: 2015
- File: ADAMIDIS, MADABHUSHI
Hits: 4247
Review
Buildings with shallow foundations form the bulk of the structures at risk due to liquefaction during a seismic event. Predictions of their potential settlement are often performed using methodologies that correspond to the free-field. However, these methods often prove insufficient, as they fail to capture the mechanisms that contribute to the settlement of a building. In an effort to offer insight regarding these mechanisms, centrifuge tests were performed, examining the seismic response of a shallow foundation on liquefiable soil. The main parameter investigated was the ratio of the width of the structure’s foundation over the depth of the liquefiable layer on which it rests. Velocity vector fields in combination with excess pore pressure distributions were used to identify settlement-generating processes. Mechanisms that are not accounted for by current methodologies, such as the mobilisation of bearing capacity and soil-structure interaction induced displacements proved to be prominent.