Overview

SECED 2015 was a two-day conference on Earthquake and Civil Engineering Dynamics that took place on 9-10th July 2015 at Homerton College, Cambridge.

This was the first major conference to be held in the UK on this topic since SECED hosted the 2002 European Conference on Earthquake Engineering in London.

The conference brought together experts from a broad range of disciplines, including structural engineering, nuclear engineering, seismology, geology, geotechnical engineering, urban development, social sciences, business and insurance; all focused on risk, mitigation and recovery.

Conference themes

  • Geotechnical earthquake engineering
  • Seismic design for nuclear facilities
  • Seismic hazard and engineering seismology
  • Masonry structures
  • Risk and catastrophe modelling
  • Vibrations, blast and civil engineering dynamics
  • Dams and hydropower
  • Seismic assessment and retrofit of engineered and non-engineered structures
  • Social impacts and community recovery

Keynote speakers

SECED 2015 featured the following keynote speakers (affiliations correct at the time of the conference):

  • Peter Ford and Tim Allmark, Office for Nuclear Regulation, UK
  • Don Anderson, CH2M HILL, Seattle, USA
  • Bernard Dost, Royal Netherlands Meteorological Institute, The Netherlands
  • Anne Kiremidjian, Stanford University, USA
  • Rob May, Golder Associates, Australia
  • Tiziana Rossetto, University College London, UK
  • Andrew Whittaker, University at Buffalo, USA
  • Mike Willford, Arup, The Netherlands

Information for authors

SECED allows the self-archiving of the Author Accepted Manuscripts (AAM) from the SECED 2015 Conference. This means that all authors can make their conference paper available via a green open access route. The full text of your paper may become visible within your personal website, your institutional repository, a subject repository or a scholarly collaboration network signed up to the voluntary STM sharing principles. It may also be shared with interested individuals, for teaching and training purposes at your own institution and for grant applications (please refer to the terms of your own institution to ensure full compliance).

To deposit your AAM, please adhere to the following conditions:

  • You should include a link back to the SECED website.
  • You should include all of the relevant metadata (article title, conference name, conference location, conference dates etc.).
  • You should include a clear licensing statement (see below).

SECED allows authors to deposit their AAM under the Creative Commons Attribution Non-commercial International Licence 4.0 (CC BY-NC 4.0). The deposit must clearly state that the AAM is deposited under this licence and that any reuse is allowed in accordance with the terms outlined by the licence. To reuse the AAM for commercial purposes, permission must be sought by contacting seced@ice.org.uk. For the sake of clarity, commercial usage would be considered as, but not limited to:

  • Copying or downloading AAMs for further distribution for a fee.
  • Any use of the AAM in conjunction with advertising.
  • Any use of the AAM by for promotional purposes by for-profit organisations.
  • Any use that would confer monetary reward, commercial gain or commercial exploitation.

Should you have any questions about our licensing policies, please contact seced@ice.org.uk.

 

Earthquake Risk and Engineering towards a Resilient World

9 - 10 July 2015, Homerton College, Cambridge, UK

Hits: 5013

Review

In this study, a seismogenic source zone model for the Algeria-Morocco region is proposed for seismic forecasting and seismic hazard studies. The delineation includes five zones based on available seismic and geological data. The zone model includes the Moroccan Meseta, the Rif, the Tell zone, the High Plateaux and the Atlas zone. Earthquake occurrence process in this region is modelled and analyzed using recent and updated earthquake catalogs for northern Morocco and northern Algeria compiled in former studies (Peláez et al. 2007; Hamdache et al. 2010). For these catalogues, dependent events were identified and removed by adapting Gardner and Knopoff declustering procedure to the characteristics of the study region. Magnitudes of completeness were estimated using different methods, then the Poissonian character of the obtained sub-catalogs was analyzed. The b-value of the Gutenberg-Richter recurrence relationship, considered as an area-specific seismic hazard parameter, was initially computed using the Weichert (1980) approach.

In order to characterize each seismogenic zone we have used a new parameter named seismic activity, defined as the number of earthquakes with magnitude above Mw 4.0 in each seismogenic zone since 1925 by each 10 years and 10000 km2. The obtained results show for example, in the Tell zone, the seismic activity is equal to 2.6 and 1.91 in the Rif region. The b-value estimation has been improved by using an extension of the Aki-Utsu b-value estimator for incomplete earthquake catalogues (Kijko and Smit, 2012). Taking into account that the maximum possible magnitude is an important parameter required by earthquake engineering community, disaster management agencies and insurance industry, a detailed analysis has been performed using different statistical methods, free from subjective assumptions and only related to the quality of the earthquake data file. Thus, the maximum possible magnitude, using parametric and non-parametric procedures, is analyzed at each seismogenic zone and its probability distribution function is derived. Then, we derive the activity rate λ (m) for events above the magnitude m, the return period for different magnitudes and the probability of exceeding a magnitude m during a time period of T years. The analysis has been performed at each seismogenic zone of the proposed model.

Tags: SECED 2015  
Date insert: