Overview
SECED 2015 was a two-day conference on Earthquake and Civil Engineering Dynamics that took place on 9-10th July 2015 at Homerton College, Cambridge.
This was the first major conference to be held in the UK on this topic since SECED hosted the 2002 European Conference on Earthquake Engineering in London.
The conference brought together experts from a broad range of disciplines, including structural engineering, nuclear engineering, seismology, geology, geotechnical engineering, urban development, social sciences, business and insurance; all focused on risk, mitigation and recovery.
Conference themes
- Geotechnical earthquake engineering
- Seismic design for nuclear facilities
- Seismic hazard and engineering seismology
- Masonry structures
- Risk and catastrophe modelling
- Vibrations, blast and civil engineering dynamics
- Dams and hydropower
- Seismic assessment and retrofit of engineered and non-engineered structures
- Social impacts and community recovery
Keynote speakers
SECED 2015 featured the following keynote speakers (affiliations correct at the time of the conference):
- Peter Ford and Tim Allmark, Office for Nuclear Regulation, UK
- Don Anderson, CH2M HILL, Seattle, USA
- Bernard Dost, Royal Netherlands Meteorological Institute, The Netherlands
- Anne Kiremidjian, Stanford University, USA
- Rob May, Golder Associates, Australia
- Tiziana Rossetto, University College London, UK
- Andrew Whittaker, University at Buffalo, USA
- Mike Willford, Arup, The Netherlands
Information for authors
SECED allows the self-archiving of the Author Accepted Manuscripts (AAM) from the SECED 2015 Conference. This means that all authors can make their conference paper available via a green open access route. The full text of your paper may become visible within your personal website, your institutional repository, a subject repository or a scholarly collaboration network signed up to the voluntary STM sharing principles. It may also be shared with interested individuals, for teaching and training purposes at your own institution and for grant applications (please refer to the terms of your own institution to ensure full compliance).
To deposit your AAM, please adhere to the following conditions:
- You should include a link back to the SECED website.
- You should include all of the relevant metadata (article title, conference name, conference location, conference dates etc.).
- You should include a clear licensing statement (see below).
SECED allows authors to deposit their AAM under the Creative Commons Attribution Non-commercial International Licence 4.0 (CC BY-NC 4.0). The deposit must clearly state that the AAM is deposited under this licence and that any reuse is allowed in accordance with the terms outlined by the licence. To reuse the AAM for commercial purposes, permission must be sought by contacting seced@ice.org.uk. For the sake of clarity, commercial usage would be considered as, but not limited to:
- Copying or downloading AAMs for further distribution for a fee.
- Any use of the AAM in conjunction with advertising.
- Any use of the AAM by for promotional purposes by for-profit organisations.
- Any use that would confer monetary reward, commercial gain or commercial exploitation.
Should you have any questions about our licensing policies, please contact seced@ice.org.uk.
Earthquake Risk and Engineering towards a Resilient World
9 - 10 July 2015, Homerton College, Cambridge, UK
Some Open Issues in the Seismic Design of Bridges to Eurocode 8-2
- Category: Eurocode 8
- Author: Stergios A Mitoulis
- Year: 2015
- File: MITOULIS
Hits: 4243
Review
This paper summarises the ongoing research on the seismic design of isolated and integral bridges at the University of Surrey. The first part of the paper focuses on the tensile stresses of elastomeric bearings that might be developed under seismic excitations, due to the rotations of the pier cap. The problem is described analytically and a multi-level performance criterion is proposed to limit the tensile stresses on the isolators. The second part of the paper sheds light on the response of integral bridges and the interaction with the backfill soil. A method for the estimation of the equivalent damping ratio of short-span integral bridges is presented to enable the seismic design of short period bridges based on Eurocode 8-2. For long-span integral bridges, a novel isolation scheme is proposed for the abutment. The isolator is a compressible inclusion comprises tyre derived aggregates (TDA) and is placed between the abutment and a mechanically stabilised backfill. The analysis of the isolated abutment showed that the compressible inclusion achieves to decouple the response of the bridge from the backfill. The analyses showed that both the pressures on the abutment and the settlements of the backfill soil were significantly reduced under the thermal and the seismic movements of the abutment. Thus, the proposed decoupling of the bridge from the abutment enables designs of long-span integral bridges based on ductility and reduces both construction and maintenance costs.